Azure Data Factory 運算子¶
Azure Data Factory 是 Azure 的雲 ETL 服務,用於橫向擴充套件的無伺服器資料整合和資料轉換。它提供一個無需程式碼的 UI,用於直觀創作以及單窗格監控和管理。
AzureDataFactoryRunPipelineOperator¶
使用 AzureDataFactoryRunPipelineOperator 在資料工廠中執行管道。預設情況下,運算子會定期檢查已執行管道的狀態,並在狀態為“成功”時終止。透過將 wait_for_termination 設定為 False,可以停用此功能以實現非同步等待——通常與 AzureDataFactoryPipelineRunStatusSensor 配合使用。
下面是使用此運算子執行 Azure Data Factory 管道的示例。
tests/system/microsoft/azure/example_adf_run_pipeline.py
run_pipeline1 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline1", pipeline_name="pipeline1", parameters={"myParam": "value"}, )
下面是使用此運算子執行 Azure Data Factory 管道並設定 deferrable 標誌的示例,以便管道執行狀態的輪詢發生在 Airflow Triggerer 上。
tests/system/microsoft/azure/example_adf_run_pipeline.py
run_pipeline3 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline3", pipeline_name="pipeline1", parameters={"myParam": "value"}, deferrable=True, )
這裡是使用此運算子執行管道但與 AzureDataFactoryPipelineRunStatusSensor 配合執行非同步等待的另一個示例。
tests/system/microsoft/azure/example_adf_run_pipeline.py
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), deferrable=True, )
此外,如果您想在 sensor 執行時釋放工作槽,可以在 AzureDataFactoryPipelineRunStatusSensor 中使用 deferrable 模式。
tests/system/microsoft/azure/example_adf_run_pipeline.py
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast("str", XComArg(run_pipeline2, key="run_id")), deferrable=True, )
非同步輪詢資料工廠管道執行狀態¶
使用 AzureDataFactoryPipelineRunStatusAsyncSensor (deferrable 版本) 非同步定期檢索資料工廠管道執行狀態。此 sensor 會釋放工作槽,因為作業狀態的輪詢發生在 Airflow triggerer 上,從而實現 Airflow 內部資源的有效利用。
tests/system/microsoft/azure/example_adf_run_pipeline.py
run_pipeline2 = AzureDataFactoryRunPipelineOperator(
task_id="run_pipeline2",
pipeline_name="pipeline2",
wait_for_termination=False,
)
pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor",
run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
)
# Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor_defered",
run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)
pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_async_sensor",
run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)
參考¶
欲瞭解更多資訊,請參考 Microsoft 文件